How 7 - 2050B

\n1. (Taminology of N d (= Neighbourhood). For c in R, 100, and U of c we mean that U 2 V₀(c)

\nfor same 50. For convenience, we can also call a part U 5B, a not d of t 300

\n1. If
$$
\frac{1}{d}x^d \in R
$$
 such that U 2 V₀(tav), where $\frac{1}{d}x^d \in R$ such that U 2 V₀(tav), where $\frac{1}{d}x^d \in R$ is $x \in \infty$ of $\frac{1}{d}x^d$

\n1. Similarly, one defines $V_0(-x)$ and n^d of $V_0(-x)$.

\nUsing the above distributions logic, should be made for B+A B. d'A².

\n1. We will find the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is not the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ is the same value of $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ and $\frac{1}{d}x^d \in R$ and $\frac{1$

2. Let
$$
f : A \rightarrow \mathbb{R}
$$
 and $c \in A^c$ ($c = -\infty, \infty$)
and let $l \in [-\infty, \infty)$. Show that the
definiture s (given in battle, Letting, Intuiting)
 f_{W} | $m : f_{W} = \begin{cases} +\infty & c \in \mathbb{R}, or c = +\infty & c = -\infty \\ 1-\infty & c = -\infty \end{cases}$
we consistive with the following:
 $\lim_{x \to c} f_{W} = \overline{R}$
 $\lim_{x \to c} f_{W} = \overline{R}$
 $\Leftrightarrow V$ $W' \circ I \cup V \circ \overline{R}$, $\exists W' \circ I \cup W \circ f \in \text{such that}$
the image $\{f(w): we \text{W}_{n}(A \circ \{c\})\} \subseteq U$

3^{*} Let
$$
f, f : X \rightarrow (0, +\infty)
$$
 and $x_0 \in X \cap \mathbb{R}$
\n $(X \subseteq \mathbb{R})$. Show that
\n(i) $\lim_{n \to \infty} f(x) = x \in [-\infty, \infty]$
\n $x \in X$ iff $\lim_{x \to x_0} (-f(x)) = -x$
\n(ii) $\lim_{x \to x_0} f(x) = 0$ if $\lim_{x \to x_0} (\frac{1}{f(x)}) = +\infty$
\n $x \in X$
\n $\lim_{x \to x_0} x \in X$
\n $\lim_{x \to x_0} x \in X$
\n $\lim_{x \to x_0} x \in \mathbb{R} \setminus \{0, +\infty\} + x$ replaced by
\n $\lim_{x \to x_0} x \in \mathbb{R} \setminus \{0, +\infty\} + x$
\n $\lim_{x \to x_0} \frac{f(x)}{f(x)} = x \in (0, +\infty)$ and $\lim_{x \to x_0} g(x) = 0$. Then
\n $\lim_{x \to x_0} \frac{f(x)}{g(x)} = +\infty$
\n $\lim_{x \to x_0} \frac{f(x)}{g(x)} = +\infty$
\n(ii) Show that $\lim_{x \to 1} (\frac{x}{x - 1}) = +\infty$ by
\n $\lim_{x \to \infty} \lim_{x \to 1} x \in \{0, -\infty\}$
\n(i) Use the results (i) - (ii)
\n(i) Calculate from def .

4. Can the assuming him
$$
x_0 \in X^c \cap IR
$$
 in Q3
relaxed to $x_0 \in X^c$ ($\subseteq [-\infty, \infty]$) ?
 \times D. Q3, 4, 5, 9, 13 of \$4.3 in Bartle
(Stav-Questions, Q13 and Q5(a), (b), (c))